Proof of Concept 5

AWARDED SEPTEMBER 2024

PROJECT TITLE	PROJECT SUMMARY	UNIVERSITY/ RESEARCH INSTITUTION	COMPANY
DENTure Protection Using Remora TEChnology (DENT-ProTec)	This study aims to address the significant health and financial burden of oral biofilms. By incorporating Remora technology (LACTAM-491), an antimicrobial and antifouling material, into materials used in dentistry (e.g. dentures and retainers) we will be able to assess whether these can prevent harmful dental biofilm accumulation.	Glasgow Caledonian University	Penrhos Bio
Rapid Legionella Identification Using Multi-excitation Raman Spectroscopy	Legionnaire's disease is a notifiable disease. Even with treatment, 1 in 10 affected will die. Legionella culture is slow, providing results in ~2 weeks, and delays between testing and results risks community transmission and disease outbreaks. We propose a new method for rapid-turnaround Legionella identification using our novel proprietary MX-Raman method.	University of Southampton	Molecular
Antifungal Plastic Coating to Prevent Transmission of Plant Pathogens in Glasshouse and Polytunnel Agriculture	Greenhouse crop production is a source of farmer income and provides food for people globally, however fungal pathogens cause significant crop damage. Gencoa developed an antimicrobial material coating, active against bacterial pathogens. This proof of concept project will test the Gencoa antimicrobial coating against plant fungal pathogens.	Nottingham Trent University	Gencoa
Development of Novel Inorganic Antibiofilm Urinary Catheter Coating	Catheter-associated urinary tract infections account for >23% of hospital-acquired infections and are predominantly driven by biofilm formation on catheters. Current catheters provide minimal resistance to biofilm formation. This project will develop novel proof-of-concept antibiofilm medical catheter coatings to substantially reduce the incidence and severity of biofilm-related infection in patients.	Nottingham Trent University	MetalloBio
Microbiota Interventions for Optimised Food Safety	Hydroponic systems enable efficient plant growth. However, they lack native microbiota, making them vulnerable to colonisation by plant and human pathogens. We will assemble and test microbial communities for foodborne disease control and yield improvement. This project addresses the microbiome imbalance in hydroponics to create safer, more sustainable food systems.	Quadram Institute	Concert Bio
EPIC: Effective Phage Products to Improve Chronic Wound Outcomes	Develop a sustainable treatment for chronic wounds, by combining LAP (Larval Alimentary Product) with phages. Chronic wounds are hard to treat and complicated by pathogenic infections and biofilms, LAP has antibiofilm properties, while phages supplement this with antimicrobial properties. Our approach seeks to improve wound management and reduce antibiotic use.	Bangor University	BioMonde
Biofilm Inhibition and Pathogen Control in Food Production Environments	Biofilms endure in food production environments despite rigorous cleaning, potentially harbouring pathogens that can contaminate food. Silane-coupled quaternary ammonium compounds (Si-Quats) prevent biofilm formation, but their efficacy against foodborne pathogens, like <i>Listeria monocytogenes</i> , remains unexplored. We will use advanced methods (calScreener) to investigate their efficacy in eliminating biofilms and pathogens.	Quadram Institute	Vitec Microgenix and Symcel
Development of a High-validity In Vitro Endotracheal Tube (IVETT) Biofilm Growth Platform for Basic and Translational Research	Biofilms grow in the endotracheal tubes that connect hospital patients to ventilators. Biofilm-associated microbes can colonise the lungs, causing pneumonia. We are building a device to grow biofilms in endotracheal tubes, in conditions resembling those in patients. This will be used to test new interventions to prevent and remove biofilms.	University of Warwick	Neave Engineering

PROJECT TITLE	PROJECT SUMMARY	UNIVERSITY/ RESEARCH INSTITUTION	COMPANY
Assessing the Effects of Novel Non-toxic Precursor Molecules in Biofilms and Re- epithelialisation of Human Skin Explant Wound Healing Models	This study will explore the biofilm efficacy, biocompatibility and re-epithelisation of delivering of non-toxic precursor molecules, that are encapsulated in PLGA generating peracetic acid and hydrogen peroxide in situ in an <i>ex-vivo</i> human skin explant model.	University of East Anglia	Aga Nanotech
Engineered Peptide Immunotherapies for the Targeted Disruption of <i>Pseudomonas</i> aeruginosa Biofilms.	Infections caused by Pseudomonas aeruginosa bacteria represent some of the most challenging hospital/healthcare issues today, especially in patients suffering from Cystic Fibrosis. Unfortunately, many Pseudomonas bacteria are now resistant to antibiotics, hampering treatment. We are developing a novel therapeutic which activates our immune systems to selectively destroy Pseudomonas.	Glasgow Caledonian University	CC Bio
SMaRTBIO: Sustainable Management and Tracking of Biofilm Removal to Allow Effective Reprocessing of Hospital Linens	Currently, large volumes of hospital linens are single- use and there is an urgent requirement for safe, efficient, and traceable laundry processes to provide validated reprocessing. We will develop a new biofilm standard to monitor laundry effectiveness, while providing enhanced infection prevention and reducing the carbon footprint of hospital linen reprocessing.	University of Southampton	Revolution- ZERO
WATTs-UP: Wastewater Ammonia Treatment and Transformation Using Pilot-scale MECs	This project aims to optimise and validate a pilot- scale Microbial Electrolysis Cell (MEC) system to efficiently recover ammonia from wastewater. This would reduce environmental pollution and create a valuable resource for industries (e.g., fertiliser). The technology offers an innovative and sustainable solution for wastewater treatment and resource recovery.	Newcastle University	METzero
Mitigation of Biofouling With Conditioned Nanobubbles	Biofouling presents a significant operational challenge in membrane-based water and wastewater treatment, often regarded as the 'Achilles Heel' of these systems. This project aims to develop and demonstrate a novel, environmentally friendly, and cost-effective approach for membrane cleaning, which is based on nano-bubbles conditioned and enhanced by electromagnetic fields.	University of Southampton	Fluid Conditioning Services
Preventative Anti-Biofilm Coatings for Potable Water Systems	Bacterial biofilms within potable water systems cause millions of illnesses annually, and in critical infrastructures such as hospitals, causes an increased mortality rate. This project aims to coat water aerators within water systems with an antibiofilm polymer to prevent bacterial biofilms without the need for an antimicrobial leaching agent.	University of Nottingham	Angel Guard
Biofilm-enabled Wetland Remediation Technology	Urbanization has led to a substantial increase in stormwater runoff. If urban stormwater runoff is not effectively managed, it can result in the contamination of receiving waters. Constructed wetlands, with their natural biofilms, offer a sustainable solution to treat this contaminated water by harnessing the power of microbes for bioremediation.	University of Sheffield	Detectronic